Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Nature ; 618(7964): 328-332, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37138083

ABSTRACT

Artefacts made from stones, bones and teeth are fundamental to our understanding of human subsistence strategies, behaviour and culture in the Pleistocene. Although these resources are plentiful, it is impossible to associate artefacts to specific human individuals1 who can be morphologically or genetically characterized, unless they are found within burials, which are rare in this time period. Thus, our ability to discern the societal roles of Pleistocene individuals based on their biological sex or genetic ancestry is limited2-5. Here we report the development of a non-destructive method for the gradual release of DNA trapped in ancient bone and tooth artefacts. Application of the method to an Upper Palaeolithic deer tooth pendant from Denisova Cave, Russia, resulted in the recovery of ancient human and deer mitochondrial genomes, which allowed us to estimate the age of the pendant at approximately 19,000-25,000 years. Nuclear DNA analysis identifies the presumed maker or wearer of the pendant as a female individual with strong genetic affinities to a group of Ancient North Eurasian individuals who lived around the same time but were previously found only further east in Siberia. Our work redefines how cultural and genetic records can be linked in prehistoric archaeology.


Subject(s)
Bone and Bones , DNA, Ancient , Tooth , Animals , Female , Humans , Archaeology/methods , Bone and Bones/chemistry , Deer/genetics , DNA, Ancient/analysis , DNA, Ancient/isolation & purification , DNA, Mitochondrial/analysis , DNA, Mitochondrial/isolation & purification , History, Ancient , Siberia , Tooth/chemistry , Caves , Russia
3.
Nat Ecol Evol ; 6(1): 28-35, 2022 01.
Article in English | MEDLINE | ID: mdl-34824388

ABSTRACT

Since the initial identification of the Denisovans a decade ago, only a handful of their physical remains have been discovered. Here we analysed ~3,800 non-diagnostic bone fragments using collagen peptide mass fingerprinting to locate new hominin remains from Denisova Cave (Siberia, Russia). We identified five new hominin bones, four of which contained sufficient DNA for mitochondrial analysis. Three carry mitochondrial DNA of the Denisovan type and one was found to carry mtDNA of the Neanderthal type. The former come from the same archaeological layer near the base of the cave's sequence and are the oldest securely dated evidence of Denisovans at 200 ka (thousand years ago) (205-192 ka at 68.2% or 217-187 ka at 95% probability). The stratigraphic context in which they were located contains a wealth of archaeological material in the form of lithics and faunal remains, allowing us to determine the material culture associated with these early hominins and explore their behavioural and environmental adaptations. The combination of bone collagen fingerprinting and genetic analyses has so far more-than-doubled the number of hominin bones at Denisova Cave and has expanded our understanding of Denisovan and Neanderthal interactions, as well as their archaeological signatures.


Subject(s)
Hominidae , Neanderthals , Animals , Archaeology , Caves , DNA, Mitochondrial/genetics , Hominidae/genetics , Neanderthals/genetics
4.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34969841

ABSTRACT

Ancient DNA recovered from Pleistocene sediments represents a rich resource for the study of past hominin and environmental diversity. However, little is known about how DNA is preserved in sediments and the extent to which it may be translocated between archaeological strata. Here, we investigate DNA preservation in 47 blocks of resin-impregnated archaeological sediment collected over the last four decades for micromorphological analyses at 13 prehistoric sites in Europe, Asia, Africa, and North America and show that such blocks can preserve DNA of hominins and other mammals. Extensive microsampling of sediment blocks from Denisova Cave in the Altai Mountains reveals that the taxonomic composition of mammalian DNA differs drastically at the millimeter-scale and that DNA is concentrated in small particles, especially in fragments of bone and feces (coprolites), suggesting that these are substantial sources of DNA in sediments. Three microsamples taken in close proximity in one of the blocks yielded Neanderthal DNA from at least two male individuals closely related to Denisova 5, a Neanderthal toe bone previously recovered from the same layer. Our work indicates that DNA can remain stably localized in sediments over time and provides a means of linking genetic information to the archaeological and ecological records on a microstratigraphic scale.


Subject(s)
Caves , DNA, Ancient , Fossils , Hominidae/genetics , Neanderthals/genetics , Animals
5.
Sci Rep ; 11(1): 15457, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326389

ABSTRACT

Denisova Cave, a Pleistocene site in the Altai Mountains of Russian Siberia, has yielded significant fossil and lithic evidence for the Pleistocene in Northern Asia. Abundant animal and human bones have been discovered at the site, however, these tend to be highly fragmented, necessitating new approaches to identifying important hominin and faunal fossils. Here we report the results for 8253 bone fragments using ZooMS. Through the integration of this new ZooMS-based data with the previously published macroscopically-identified fauna we aim to create a holistic picture of the zooarchaeological record of the site. We identify trends associated with climate variability throughout the Middle and Upper Pleistocene as well as patterns explaining the process of bone fragmentation. Where morphological analysis of bones from the site have identified a high proportion of carnivore bones (30.2%), we find that these account for only 7.6% of the ZooMS assemblage, with large mammals between 3 and 5 more abundant overall. Our analysis suggests a cyclical pattern in fragmentation of bones which sees initial fragmentation by hominins using percussive tools and secondary carnivore action, such as gnawing and digestion, likely furthering the initial human-induced fragmentation.


Subject(s)
Archaeology/methods , Collagen/chemistry , Paleontology/methods , Animals , Bone and Bones/pathology , Carnivora , Caves , Fossils , Hominidae , Humans , Siberia
6.
Nature ; 595(7867): 399-403, 2021 07.
Article in English | MEDLINE | ID: mdl-34163072

ABSTRACT

Denisova Cave in southern Siberia is the type locality of the Denisovans, an archaic hominin group who were related to Neanderthals1-4. The dozen hominin remains recovered from the deposits also include Neanderthals5,6 and the child of a Neanderthal and a Denisovan7, which suggests that Denisova Cave was a contact zone between these archaic hominins. However, uncertainties persist about the order in which these groups appeared at the site, the timing and environmental context of hominin occupation, and the association of particular hominin groups with archaeological assemblages5,8-11. Here we report the analysis of DNA from 728 sediment samples that were collected in a grid-like manner from layers dating to the Pleistocene epoch. We retrieved ancient faunal and hominin mitochondrial (mt)DNA from 685 and 175 samples, respectively. The earliest evidence for hominin mtDNA is of Denisovans, and is associated with early Middle Palaeolithic stone tools that were deposited approximately 250,000 to 170,000 years ago; Neanderthal mtDNA first appears towards the end of this period. We detect a turnover in the mtDNA of Denisovans that coincides with changes in the composition of faunal mtDNA, and evidence that Denisovans and Neanderthals occupied the site repeatedly-possibly until, or after, the onset of the Initial Upper Palaeolithic at least 45,000 years ago, when modern human mtDNA is first recorded in the sediments.


Subject(s)
Caves , DNA, Ancient/analysis , Geologic Sediments/chemistry , Hominidae/genetics , Animals , Archaeology , DNA, Mitochondrial/analysis , DNA, Mitochondrial/genetics , Fossils , History, Ancient , Neanderthals/genetics , Siberia
7.
Science ; 372(6542)2021 05 07.
Article in English | MEDLINE | ID: mdl-33858989

ABSTRACT

Bones and teeth are important sources of Pleistocene hominin DNA, but are rarely recovered at archaeological sites. Mitochondrial DNA (mtDNA) has been retrieved from cave sediments but provides limited value for studying population relationships. We therefore developed methods for the enrichment and analysis of nuclear DNA from sediments and applied them to cave deposits in western Europe and southern Siberia dated to between 200,000 and 50,000 years ago. We detected a population replacement in northern Spain about 100,000 years ago, which was accompanied by a turnover of mtDNA. We also identified two radiation events in Neanderthal history during the early part of the Late Pleistocene. Our work lays the ground for studying the population history of ancient hominins from trace amounts of nuclear DNA in sediments.


Subject(s)
Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Neanderthals/classification , Neanderthals/genetics , Animals , Caves/chemistry , DNA, Mitochondrial/analysis , DNA, Mitochondrial/isolation & purification , Geologic Sediments/chemistry , Phylogeny , Population/genetics , Sequence Analysis, DNA , Siberia , Spain
8.
PLoS One ; 15(11): e0241997, 2020.
Article in English | MEDLINE | ID: mdl-33180850

ABSTRACT

A growing number of researchers studying horse domestication come to a conclusion that this process happened in multiple locations and involved multiple wild maternal lines. The most promising approach to address this problem involves mitochondrial haplotype comparison of wild and domestic horses from various locations coupled with studies of possible migration routes of the ancient shepherds. Here, we sequenced complete mitochondrial genomes of six horses from burials of the Ukok plateau (Russia, Altai Mountains) dated from 2.7 to 1.4 thousand years before present and a single late Pleistocene wild horse from the neighboring region (Denisova cave). Sequencing data indicates that the wild horse belongs to an extinct pre-domestication lineage. Integration of the domestic horse data with known Eurasian haplotypes of a similar age revealed two distinct groups: the first one widely distributed in Europe and presumably imported to Altai, and the second one specific for Altai Mountains and surrounding area.


Subject(s)
Animals, Domestic/genetics , Animals, Wild/genetics , Mitochondria/genetics , Whole Genome Sequencing/veterinary , Animals , DNA, Ancient/analysis , Evolution, Molecular , Extinction, Biological , Fossils/history , Genome, Mitochondrial , Haplotypes , High-Throughput Nucleotide Sequencing/veterinary , History, Ancient , Horses , Phylogeny , Russia
9.
Science ; 369(6511): 1653-1656, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32973032

ABSTRACT

Ancient DNA has provided new insights into many aspects of human history. However, we lack comprehensive studies of the Y chromosomes of Denisovans and Neanderthals because the majority of specimens that have been sequenced to sufficient coverage are female. Sequencing Y chromosomes from two Denisovans and three Neanderthals shows that the Y chromosomes of Denisovans split around 700 thousand years ago from a lineage shared by Neanderthals and modern human Y chromosomes, which diverged from each other around 370 thousand years ago. The phylogenetic relationships of archaic and modern human Y chromosomes differ from the population relationships inferred from the autosomal genomes and mirror mitochondrial DNA phylogenies, indicating replacement of both the mitochondrial and Y chromosomal gene pools in late Neanderthals. This replacement is plausible if the low effective population size of Neanderthals resulted in an increased genetic load in Neanderthals relative to modern humans.


Subject(s)
Evolution, Molecular , Life History Traits , Neanderthals/genetics , Y Chromosome/genetics , Animals , Chromosomes, Human, Y/genetics , DNA, Ancient , DNA, Mitochondrial/genetics , Humans , Male , Neanderthals/classification , Phylogeny
10.
Sci Adv ; 5(9): eaaw3950, 2019 09.
Article in English | MEDLINE | ID: mdl-31517046

ABSTRACT

A fully sequenced high-quality genome has revealed in 2010 the existence of a human population in Asia, the Denisovans, related to and contemporaneous with Neanderthals. Only five skeletal remains are known from Denisovans, mostly molars; the proximal fragment of a fifth finger phalanx used to generate the genome, however, was too incomplete to yield useful morphological information. Here, we demonstrate through ancient DNA analysis that a distal fragment of a fifth finger phalanx from the Denisova Cave is the larger, missing part of this phalanx. Our morphometric analysis shows that its dimensions and shape are within the variability of Homo sapiens and distinct from the Neanderthal fifth finger phalanges. Thus, unlike Denisovan molars, which display archaic characteristics not found in modern humans, the only morphologically informative Denisovan postcranial bone identified to date is suggested here to be plesiomorphic and shared between Denisovans and modern humans.


Subject(s)
Finger Phalanges/anatomy & histology , Genome, Human , Molar/anatomy & histology , Neanderthals , Animals , Humans , Neanderthals/anatomy & histology , Neanderthals/genetics , Species Specificity
11.
Sci Rep ; 9(1): 13785, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31558742

ABSTRACT

Denisova Cave in southern Siberia uniquely contains evidence of occupation by a recently discovered group of archaic hominins, the Denisovans, starting from the middle of the Middle Pleistocene. Artefacts, ancient DNA and a range of animal and plant remains have been recovered from the sedimentary deposits, along with a few fragmentary fossils of Denisovans, Neanderthals and a first-generation Neanderthal-Denisovan offspring. The deposits also contain microscopic traces of hominin and animal activities that can provide insights into the use of the cave over the last 300,000 years. Here we report the results of a micromorphological study of intact sediment blocks collected from the Pleistocene deposits in the Main and East Chambers of Denisova Cave. The presence of charcoal attests to the use of fire by hominins, but other evidence of their activities preserved in the microstratigraphic record are few. The ubiquitous occurrence of coprolites, which we attribute primarily to hyenas, indicates that the site was visited for much of its depositional history by cave-dwelling carnivores. Microscopic traces of post-depositional diagenesis, bioturbation and incipient cryoturbation are observed in only a few regions of the deposit examined here. Micromorphology can help identify areas of sedimentary deposit that are most conducive to ancient DNA preservation and could be usefully integrated with DNA analyses of sediments at archaeological sites to illuminate features of their human and environmental history that are invisible to the naked eye.


Subject(s)
Caves , Fossils , Hominidae , Animals , Archaeology , Cold Climate , DNA, Ancient/isolation & purification , History, Ancient , Hominidae/genetics , Humans , Neanderthals/genetics , Paleontology , Siberia
12.
Nature ; 565(7741): 594-599, 2019 01.
Article in English | MEDLINE | ID: mdl-30700870

ABSTRACT

The Altai region of Siberia was inhabited for parts of the Pleistocene by at least two groups of archaic hominins-Denisovans and Neanderthals. Denisova Cave, uniquely, contains stratified deposits that preserve skeletal and genetic evidence of both hominins, artefacts made from stone and other materials, and a range of animal and plant remains. The previous site chronology is based largely on radiocarbon ages for fragments of bone and charcoal that are up to 50,000 years old; older ages of equivocal reliability have been estimated from thermoluminescence and palaeomagnetic analyses of sediments, and genetic analyses of hominin DNA. Here we describe the stratigraphic sequences in Denisova Cave, establish a chronology for the Pleistocene deposits and associated remains from optical dating of the cave sediments, and reconstruct the environmental context of hominin occupation of the site from around 300,000 to 20,000 years ago.


Subject(s)
Caves , Hominidae , Animals , Geologic Sediments/chemistry , History, Ancient , Siberia , Time Factors
13.
Nature ; 565(7741): 640-644, 2019 01.
Article in English | MEDLINE | ID: mdl-30700871

ABSTRACT

Denisova Cave in the Siberian Altai (Russia) is a key site for understanding the complex relationships between hominin groups that inhabited Eurasia in the Middle and Late Pleistocene epoch. DNA sequenced from human remains found at this site has revealed the presence of a hitherto unknown hominin group, the Denisovans1,2, and high-coverage genomes from both Neanderthal and Denisovan fossils provide evidence for admixture between these two populations3. Determining the age of these fossils is important if we are to understand the nature of hominin interaction, and aspects of their cultural and subsistence adaptations. Here we present 50 radiocarbon determinations from the late Middle and Upper Palaeolithic layers of the site. We also report three direct dates for hominin fragments and obtain a mitochondrial DNA sequence for one of them. We apply a Bayesian age modelling approach that combines chronometric (radiocarbon, uranium series and optical ages), stratigraphic and genetic data to calculate probabilistically the age of the human fossils at the site. Our modelled estimate for the age of the oldest Denisovan fossil suggests that this group was present at the site as early as 195,000 years ago (at 95.4% probability). All Neanderthal fossils-as well as Denisova 11, the daughter of a Neanderthal and a Denisovan4-date to between 80,000 and 140,000 years ago. The youngest Denisovan dates to 52,000-76,000 years ago. Direct radiocarbon dating of Upper Palaeolithic tooth pendants and bone points yielded the earliest evidence for the production of these artefacts in northern Eurasia, between 43,000 and 49,000 calibrated years before present (taken as AD 1950). On the basis of current archaeological evidence, it may be assumed that these artefacts are associated with the Denisovan population. It is not currently possible to determine whether anatomically modern humans were involved in their production, as modern-human fossil and genetic evidence of such antiquity has not yet been identified in the Altai region.


Subject(s)
Caves , Fossils , Hominidae , Radiometric Dating , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Deer , Femur/chemistry , Geologic Sediments/chemistry , History, Ancient , Hominidae/genetics , Humans , Neanderthals/genetics , Oxygen Isotopes , Siberia , Time Factors , Tooth/chemistry
14.
Nature ; 561(7721): 113-116, 2018 09.
Article in English | MEDLINE | ID: mdl-30135579

ABSTRACT

Neanderthals and Denisovans are extinct groups of hominins that separated from each other more than 390,000 years ago1,2. Here we present the genome of 'Denisova 11', a bone fragment from Denisova Cave (Russia)3 and show that it comes from an individual who had a Neanderthal mother and a Denisovan father. The father, whose genome bears traces of Neanderthal ancestry, came from a population related to a later Denisovan found in the cave4-6. The mother came from a population more closely related to Neanderthals who lived later in Europe2,7 than to an earlier Neanderthal found in Denisova Cave8, suggesting that migrations of Neanderthals between eastern and western Eurasia occurred sometime after 120,000 years ago. The finding of a first-generation Neanderthal-Denisovan offspring among the small number of archaic specimens sequenced to date suggests that mixing between Late Pleistocene hominin groups was common when they met.


Subject(s)
Hominidae/genetics , Hybridization, Genetic/genetics , Neanderthals/genetics , Alleles , Animals , Fathers , Female , Gene Flow/genetics , Genome , Genomics , History, Ancient , Humans , Male , Mothers , Time Factors
15.
Sci Adv ; 3(7): e1700186, 2017 07.
Article in English | MEDLINE | ID: mdl-28695206

ABSTRACT

The presence of Neandertals in Europe and Western Eurasia before the arrival of anatomically modern humans is well supported by archaeological and paleontological data. In contrast, fossil evidence for Denisovans, a sister group of Neandertals recently identified on the basis of DNA sequences, is limited to three specimens, all of which originate from Denisova Cave in the Altai Mountains (Siberia, Russia). We report the retrieval of DNA from a deciduous lower second molar (Denisova 2), discovered in a deep stratigraphic layer in Denisova Cave, and show that this tooth comes from a female Denisovan individual. On the basis of the number of "missing substitutions" in the mitochondrial DNA determined from the specimen, we find that Denisova 2 is substantially older than two of the other Denisovans, reinforcing the view that Denisovans were likely to have been present in the vicinity of Denisova Cave over an extended time period. We show that the level of nuclear DNA sequence diversity found among Denisovans is within the lower range of that of present-day human populations.

16.
Science ; 356(6338): 605-608, 2017 May 12.
Article in English | MEDLINE | ID: mdl-28450384

ABSTRACT

Although a rich record of Pleistocene human-associated archaeological assemblages exists, the scarcity of hominin fossils often impedes the understanding of which hominins occupied a site. Using targeted enrichment of mitochondrial DNA, we show that cave sediments represent a rich source of ancient mammalian DNA that often includes traces of hominin DNA, even at sites and in layers where no hominin remains have been discovered. By automation-assisted screening of numerous sediment samples, we detected Neandertal DNA in eight archaeological layers from four caves in Eurasia. In Denisova Cave, we retrieved Denisovan DNA in a Middle Pleistocene layer near the bottom of the stratigraphy. Our work opens the possibility of detecting the presence of hominin groups at sites and in areas where no skeletal remains are found.


Subject(s)
DNA, Ancient/isolation & purification , DNA, Mitochondrial/isolation & purification , Hominidae/classification , Hominidae/genetics , Animals , Caves , DNA, Ancient/analysis , DNA, Mitochondrial/analysis , Europe , Fossils , Geologic Sediments/chemistry , Sequence Analysis, DNA
17.
Proc Natl Acad Sci U S A ; 112(51): 15696-700, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26630009

ABSTRACT

Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans.


Subject(s)
Cell Nucleus/genetics , DNA, Mitochondrial/chemistry , Neanderthals/genetics , Animals , Base Sequence , Evolution, Molecular , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA
18.
Proc Natl Acad Sci U S A ; 111(18): 6666-71, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24753607

ABSTRACT

We present the DNA sequence of 17,367 protein-coding genes in two Neandertals from Spain and Croatia and analyze them together with the genome sequence recently determined from a Neandertal from southern Siberia. Comparisons with present-day humans from Africa, Europe, and Asia reveal that genetic diversity among Neandertals was remarkably low, and that they carried a higher proportion of amino acid-changing (nonsynonymous) alleles inferred to alter protein structure or function than present-day humans. Thus, Neandertals across Eurasia had a smaller long-term effective population than present-day humans. We also identify amino acid substitutions in Neandertals and present-day humans that may underlie phenotypic differences between the two groups. We find that genes involved in skeletal morphology have changed more in the lineage leading to Neandertals than in the ancestral lineage common to archaic and modern humans, whereas genes involved in behavior and pigmentation have changed more on the modern human lineage.


Subject(s)
Exome , Genetic Variation , Neanderthals/genetics , Amino Acid Substitution , Animals , Croatia , DNA/genetics , Gene Frequency , Humans , Paleontology , Phylogeny , Polymorphism, Single Nucleotide , Siberia , Spain
19.
Proc Natl Acad Sci U S A ; 111(6): 2229-34, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-24469802

ABSTRACT

One of the main impediments for obtaining DNA sequences from ancient human skeletons is the presence of contaminating modern human DNA molecules in many fossil samples and laboratory reagents. However, DNA fragments isolated from ancient specimens show a characteristic DNA damage pattern caused by miscoding lesions that differs from present day DNA sequences. Here, we develop a framework for evaluating the likelihood of a sequence originating from a model with postmortem degradation-summarized in a postmortem degradation score-which allows the identification of DNA fragments that are unlikely to originate from present day sources. We apply this approach to a contaminated Neandertal specimen from Okladnikov Cave in Siberia to isolate its endogenous DNA from modern human contaminants and show that the reconstructed mitochondrial genome sequence is more closely related to the variation of Western Neandertals than what was discernible from previous analyses. Our method opens up the potential for genomic analysis of contaminated fossil material.


Subject(s)
DNA, Mitochondrial/isolation & purification , Neanderthals/genetics , Animals , DNA, Mitochondrial/genetics , Humans , Molecular Sequence Data , Siberia
20.
Nature ; 505(7481): 43-9, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24352235

ABSTRACT

We present a high-quality genome sequence of a Neanderthal woman from Siberia. We show that her parents were related at the level of half-siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neanderthal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neanderthals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high-quality Neanderthal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans.


Subject(s)
Fossils , Genome/genetics , Neanderthals/genetics , Africa , Animals , Caves , DNA Copy Number Variations/genetics , Female , Gene Flow/genetics , Gene Frequency , Heterozygote , Humans , Inbreeding , Models, Genetic , Neanderthals/classification , Phylogeny , Population Density , Siberia/ethnology , Toe Phalanges/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...